London Daily

Focus on the big picture.
Friday, Aug 22, 2025

Innovators in Japan are developing new technologies to counter coronavirus

Innovators in Japan are developing new technologies to counter coronavirus

As the global coronavirus pandemic continues, the world is searching for new measures that will minimize the risk of infection while allowing essential institutions such as hospitals, government, and schools to continue to function.

In any public health plan for public spaces, two issues that must be addressed are countermeasures against viruses in the air and viruses on surfaces that are touched by many different people. Traditional disinfection measures have involved using chlorine-based cleansers or alcohol which are either sprayed or applied by hand. This approach, however, is not only labor intensive and of limited effectiveness, it also exposes cleaning staff to a greater risk of infection. Solutions are needed as we face this “new normal” and several innovators have stepped forward with some new ideas.

Crunching Numbers to Beat the Virus


The first step in any kind of research is creating models, and computers have been an invaluable tool in this process. Accurately simulating the motion of thousands of droplets through the air, however, has been beyond the capabilities of most available computers. To answer the need for more computational power, Japan’s Institute of Physical and Chemical Research, or RIKEN, working in collaboration with Fujitsu, has developed the supercomputer Fugaku, currently the most powerful in the world. By good fortune, it went into operation in 2020, just in time to be put to use in combatting the fast-growing COVID-19 crisis.

The supercomputer Fugaku, developed jointly by RIKEN and Fujitsu, is being put to work modelling how the coronavirus can spread.


Some of the first questions that Fugaku was tasked with answering involved the spread of the coronavirus through the air. By itself, the virus does not appear to be airborne, rather it travels inside droplets of fluid on the air, such as those released when an infected person coughs or sneezes. Fugaku was capable of running detailed simulations of how fluid particles can move through the air, allowing researchers to assess the risk levels not only from coughing, but also when speaking or singing. The simulations also provided convincing evidence that masks have a significant effect on reducing exposure, especially when worn by people who are infected. These findings were a tremendous help to public health authorities in providing safety guidelines that were clear, effective, and backed by evidence.

Simulations produced by Fugaku have demonstrated how the virus can spread, and how effective masks can be, greatly helping health authorities.


A further application of Fugaku has been in simulating the interaction between the proteins on the coronavirus and a wide range of medications. In just 10 days, Fugaku was able to test over 2000 drugs, identifying dozens that showed promise as potential therapeutic treatments. No other computer or testing system developed so far has been able to produce so many results so quickly, and this has the potential of not only producing effective treatments for those infected with COVID-19, but a wide range of other diseases as well.

Using Precision-filtered Ultraviolet Light to Kill COVID-19 on Surfaces


A common expression in English says that “Sunlight is the best disinfectant,” but this has turned out to be much more than a figure of speech. Ultraviolet light, the same wavelength of sunlight that causes tanning or sunburns, has long been used to sterilize medical equipment and other tools without the need for chemical treatments that can potentially be harmful or produce chemical-resistant pathogens. It works because the high energy of UV light can break apart the chemical bonds of molecules inside microorganisms, preventing them from functioning or reproducing. These high energy levels, however, can also damage the cells in our bodies, so traditional UV disinfection systems must use closed containers to shield our skin and eyes, making them impractical for large areas and impossible for use in occupied rooms.

Recognizing the urgent need for safe and effective sterilization technologies that can be used in occupied spaces, Ushio, Inc. of Japan developed their Care222® lamp module. The technology uses a combination of an excimer lamp that emits ultraviolet light concentrated around the 222-nanometer wavelength, and a unique filter that blocks potentially harmful photons above 230nm from being emitted.

Ushio’s Care222® i Series lamp can safely be used to suppress coronavirus in occupied rooms.


Ushio’s Care222® i Series is capable of disinfecting spaces up to 2.5 meters away by 99% in only 6.3 minutes. This allows it to be installed in ceilings where it can be used to continually disinfect public spaces where many people make physical contact with surfaces, such as entrances, hallways, meeting rooms or restrooms, as well as frequently touched items such as handrails and doorknobs. With this technology, businesses and public facilities can continually contribute to protecting their employees and visitors.

Care222® is capable of killing 99% of viruses from 2.5 meters away in just 6.3 minutes, making it ideal for continual sterilization of public spaces used by many people.


Adapting Ozone to Fight COVID-19 in the Air


Oxygen is perhaps the most vital element for human life, but it can also be a powerful weapon against coronavirus. The oxygen we breathe is actually molecular oxygen, which is made up of two oxygen atoms tightly bonded together. When on their own, lone oxygen atoms will react with, or oxidize, nearly anything, making them extremely effective for killing bacteria. Ozone is special but easy-to-produce form of oxygen made up of three atoms bonded together. Because the molecule is unstable, it quickly breaks apart into a two-oxygen molecule and a microorganism-killing single oxygen atom. Ozone released into the air reverts back to ordinary molecular oxygen within a short time, leaving no harmful residues behind, making it a much more environmentally friendly disinfectant than bleach or other chlorine-based cleansers. Additionally, microorganisms cannot build up resistance to oxygen as they can to antibiotics. Based on this knowledge, Professor Takayuki Murata of Fujita Medical University in Aichi Prefecture, not far from Nagoya, began investigating whether ozone could be safely used as a preventive measure against coronavirus.

Ozone had been tested as a disinfectant in the past, and had been shown to be effective against viruses like the one that causes COVID-19. Unfortunately, ozone can be harmful if inhaled in high enough concentration, and previous testing had only been done at levels that would be dangerous for people. These tests had shown that ozone was effective for quickly disinfecting closed-off spaces, but they were impractical for disinfecting spaces used by many people throughout the day, or which could not easily be sealed off.

The effectiveness of disinfecting with low-concentration ozone is tested against control groups with no ozone.


Professor Murata’s team looked into whether ozone could be effective against coronavirus at concentrations low enough to be safe for people. The maximum limit for ozone was set at 0.1 part per million (ppm), so they began their investigations with concentrations of just 0.1ppm. What they found was that maintaining a continuous low concentration could kill about 95% of infectious viruses within 10 hours. Furthermore, at concentrations of just 0.05ppm, a level that is completely safe for people, the same reduction in virus levels could be achieved in 20 hours. This meant that very low concentrations of ozone could be used to continuously disinfect high-traffic areas. Professor Murata’s findings have already led several hospitals to install ozone generators in their waiting areas and patient rooms, and they are starting to be adopted for use in taxis and public transportation.

Creating a Better New Normal


Now that a vaccine has been developed, hope is growing that the end of the pandemic is in sight. But there is still a way to go, and millions of vulnerable people who need to be protected. Even after COVID-19 has passed, innovations like these will help to keep our workplaces and public spaces safer from new and existing pathogens, so that the next potential pandemic may be easier to control and prevent.




Newsletter

Related Articles

0:00
0:00
Close
After 200,000 Orders in 2 Minutes: Xiaomi Accelerates Marketing in Europe
Ukraine Declares De Facto War on Hungary and Slovakia with Terror Drone Strikes on Their Gas Lifeline
Animated K-pop Musical ‘KPop Demon Hunters’ Becomes Netflix’s Most-Watched Original Animated Film
New York Appeals Court Voids Nearly $500 Million Civil Fraud Penalty Against Trump While Upholding Fraud Liability
Elon Musk tweeted, “Europe is dying”
Far-Right Activist Convicted of Incitement Changes Gender and Demands: "Send Me to a Women’s Prison" | The Storm in Germany
Hungary Criticizes Ukraine: "Violating Our Sovereignty"
Will this be the first country to return to negative interest rates?
Child-free hotels spark controversy
North Korea is where this 95-year-old wants to die. South Korea won’t let him go. Is this our ally or a human rights enemy?
Hong Kong Launches Regulatory Regime and Trials for HKD-Backed Stablecoins
China rehearses September 3 Victory Day parade as imagery points to ‘loyal wingman’ FH-97 family presence
Trump Called Viktor Orbán: "Why Are You Using the Veto"
Horror in the Skies: Plane Engine Exploded, Passengers Sent Farewell Messages
MSNBC Rebrands as MS NOW Amid Comcast’s Cable Spin-Off
AI in Policing: Draft One Helps Speed Up Reports but Raises Legal and Ethical Concerns
Shame in Norway: Crown Princess’s Son Accused of Four Rapes
Apple Begins Simultaneous iPhone 17 Production in India and China
A Robot to Give Birth: The Chinese Announcement That Shakes the World
Finnish MP Dies by Suicide in Parliament Building
Outrage in the Tennis World After Jannik Sinner’s Withdrawal Storm
William and Kate Are Moving House – and the New Neighbors Were Evicted
Class Action Lawsuit Against Volkswagen: Steering Wheel Switches Cause Accidents
Taylor Swift on the Way to the Super Bowl? All the Clues Stirring Up Fans
Dogfights in the Skies: Airbus on Track to Overtake Boeing and Claim Aviation Supremacy
Tim Cook Promises an AI Revolution at Apple: "One of the Most Significant Technologies of Our Generation"
Apple Expands Social Media Presence in China With RedNote Account Ahead of iPhone 17 Launch
Are AI Data Centres the Infrastructure of the Future or the Next Crisis?
Cambridge Dictionary Adds 'Skibidi,' 'Delulu,' and 'Tradwife' Amid Surge of Online Slang
Bill Barr Testifies No Evidence Implicated Trump in Epstein Case; DOJ Set to Release Records
Zelenskyy Returns to White House Flanked by European Allies as Trump Pressures Land-Swap Deal with Putin
The CEO Who Replaced 80% of Employees for the AI Revolution: "I Would Do It Again"
Emails Worth Billions: How Airlines Generate Huge Profits
Character.ai Bets on Future of AI Companionship
China Ramps Up Tax Crackdown on Overseas Investments
Japanese Office Furniture Maker Expands into Bomb Shelter Market
Intel Shares Surge on Possible U.S. Government Investment
Hurricane Erin Threatens U.S. East Coast with Dangerous Surf
EU Blocks Trade Statement Over Digital Rule Dispute
EU Sends Record Aid as Spain Battles Wildfires
JPMorgan Plans New Canary Wharf Tower
Zelenskyy and his allies say they will press Trump on security guarantees
Beijing is moving into gold and other assets, diversifying away from the dollar
Escalating Clashes in Serbia as Anti-Government Protests Spread Nationwide
The Drought in Britain and the Strange Request from the Government to Delete Old Emails
Category 5 Hurricane in the Caribbean: 'Catastrophic Storm' with Winds of 255 km/h
"No, Thanks": The Mathematical Genius Who Turned Down 1.5 Billion Dollars from Zuckerberg
The surprising hero, the ugly incident, and the criticism despite victory: "Liverpool’s defense exposed in full"
Digital Humans Move Beyond Sci-Fi: From Virtual DJs to AI Customer Agents
YouTube will start using AI to guess your age. If it’s wrong, you’ll have to prove it
×