London Daily

Focus on the big picture.
Thursday, Oct 02, 2025

Maximising AI and Machine Learning to Drive AML and KYC Compliance

Maximising AI and Machine Learning to Drive AML and KYC Compliance

The game of cat and mouse between the regulators and banks against money launderers has now moved to a new level – all thanks to the emergence of AI and machine learning technologies.

AI and machine learning technologies have been around for some time, but have recently started coming into prominence in the world of financial services. Banks and financial services companies are under constant regulatory pressure to implement ever more stringent regulations to curb the flow of illegal money through their counters.

Know your customer or KYC is a process that helps banks and financial institutions identify their customers and evaluate any potential risks or malicious intent that might jeopardise a company’s reputation and credibility – and the conduct of business in compliance with the laws of the land. As for anti-money laundering (AML), governments are constantly evolving regulatory restrictions and monitoring requirements, for example for the EU’s Fifth Anti-Money Laundering Directive (5MLD) and regular updates to the US Patriot Act and Sanctions regulations.

Currently, the processes for both anti-money laundering (AML) and Know Your Customer (KYC) are often both tedious and time consuming. Many banks and financial institutions still rely on a combination of part-automation and part-manual process as they go through heaps of data to monitor for suspect transactions and ensure compliance to regulations. These emergent AI and ML technologies offer a more intelligent approach to automating banks’ monitoring and compliance capabilities.


Streamlining AML with AI and ML

The financial services industry plays an important role in governments’ efforts worldwide in controlling and preventing fraud and eliminating the infusion and circulation of illegal money into formal financial systems. Thus, banks and financial services companies find themselves constantly on the treadmill of upgrading their systems and processes to monitor and comply with extant and emergent regulations. Against this backdrop, those looking to avoid detection are trying even more innovative ways to slip through the monitoring net.

What’s more, a report from Lexis Nexis found that after compliance with regulation, a need to improve business results was the second most cited driver – for 21% of respondents. A majority said that the manual and semi-automated nature of current AML compliance efforts slows down processing timelines and impacts business productivity. Nevertheless this has been a necessity thanks to punitive penalties to banks that let such a transaction slip through.

Given such a high price for failure, banks have taken a very conservative approach to dealing with suspect and potentially suspect transactions. This has led to large volumes of false positives in addition to the genuine ones, and unravelling these has become one of the largest concentrations of manual effort for banks. In an increasingly fast-paced world, where customers expect services in record time, this has the disadvantage of reduced processing speeds, missed SLAs and poor customer experience.

Banks employ significant numbers of operations personnel trained in monitoring transactions, picking out potentially suspicious ones and working through each to decide if they are false positives or indeed suspicious transactions needing to be stopped. This is often based on a combination of a set of well-defined rules and the experience and expertise of the operations personnel trained to pick-out the suspicious ones from the rest. The operators use a combination of a deep knowledge of the client, their business and associated transaction flow patterns to spot those that don’t conform to the normal pattern.


The arrival of automation

Banks have also leveraged automation to augment and amplify human efforts in sifting, sorting and using deterministic approaches to this monitoring effort – and such automation have largely been rule-based and non-intelligent (i.e. no ability to learn) and non-adaptive (using that learning to drive better conclusions). Coupled with this is also the risk of the ‘human-fatigue factor’ inherent in largely manual operations, that may cause a few suspicious transactions to slip through the net.

This is precisely where AI and machine learning can help the banks. These technologies enable banks to implement ‘intelligent automation’ that can learn – either through self-learning or by being taught by a human supervisor to determine if a transaction is suspect or a false positive. There is also ‘adaptive automation’ that can apply such learning, adapt its rules and then improve its classifications for future.

Most banks are conducting proofs-of-concept and pilots to test the efficacy of using these technologies. These experiments involve using these approaches to develop algorithms that are run on large quantities of past real-world data and trained using supervised learning techniques, letting an experienced human operator to teach them the right from the wrong conclusions. Training using large quantities of real-world data enables these algorithms to narrow the deviation from the correct outcomes of such transactions, processed earlier by human operators.

In some scenarios unsupervised learning approaches can also be used to learn from past transactional data and the associated outcomes. It is important therefore that the quality of transactional data used in the learning process is good, and it is important to use datasets that offer a variety of patterns, to improve the quality of the learning.

These algorithms will have to be put through rigorous testing to determine the ‘dependability factor’ before they can be used to replace human operators. Until this happens, these algorithms can be used to assist human operators in pre-classifying potentially suspect transactions into low, medium and high risk categories, helping improve the efficiency of human operators.


The impact of artificial intelligence

When such technologies are employed at scale, they can offer enormous benefits. Firstly, they improve the overall quality of transaction monitoring and compliance, as they can read and make sense of large quantities of structured and unstructured data, and conduct real-time analysis of transactions to classify potentially suspicious ones and grade them as low, medium and high risk categories. This enables prioritised processing by human operators.

One of the biggest challenges in a manual intensive process is the human-fatigue factor, and the possibility of some transactions slipping through the net due to this. Technologies such as AI and ML solutions do not have the fatigue factor, and have a much higher threshold at significantly larger transaction volumes. They can also learn to spot newer patterns of potentially suspicious transactions through continuous learning, both supervised and unsupervised.

Ultimately, the major impact on banks will be to reduce the overall number of people deployed in AML and KYC operations in banks – this not only saves costs, but enables banks to redeploy those staff into more creative, problem-solving roles. With customers wanting more instant, seamless experiences than ever before, banks should be using their best staff to find new ways to innovate and meet customer demand – not to carry out manual processing tasks that machines can do faster and better.

A combination of AI and machine learning can enable financial institutions to reduce their exposure to the risk of penalties and fines from national and international regulators. The time is now ripe for financial institutions to take note and incorporate these advanced technologies – they have incalculable potential to transform the sector and enhance customer experience.

Newsletter

Related Articles

0:00
0:00
Close
Trump Administration Launches “TrumpRx” Plan to Enable Direct Drug Sales at Deep Discounts
Trump Announces Intention to Impose 100 Percent Tariff on Foreign-Made Films
Altman Says GPT-5 Already Outpaces Him, Warns AI Could Automate 40% of Work
Singapore and Hong Kong Vie to Dominate Asia’s Rising Gold Trade
Trump Organization Teams with Saudi Developer on $1 Billion Trump Plaza in Jeddah
Manhattan Sees Surge in Office-to-Housing Conversions, Highest Since 2008
Switzerland and U.S. Issue Joint Assurance Against Currency Manipulation
Electronic Arts to Be Taken Private in Historic $55 Billion Buyout
Thomas Jacob Sanford Named as Suspect in Deadly Michigan Church Shooting and Arson
Russian Research Vessel 'Yantar' Tracked Mapping Europe’s Subsea Cables, Raising Security Alarms
New York Man Arrested After On-Air Confession to 2017 Parents’ Murders
U.S. Defense Chief Orders Sudden Summit of Hundreds of Generals and Admirals
Global Cruise Industry Posts Dramatic Comeback with 34.6 Million Passengers in 2024
Trump Claims FBI Planted 274 Agents at Capitol Riot, Citing Unverified Reports
India: Internet Suspended in Bareilly Amid Communal Clashes Between Muslims and Hindus
Supreme Court Extends Freeze on Nearly $5 Billion in U.S. Foreign Aid at Trump’s Request
Archaeologists Recover Statues and Temples from 2,000-Year-Old Sunken City off Alexandria
China Deploys 2,000 Workers to Spain to Build Major EV Battery Factory, Raising European Dependence
Speed Takes Over: How Drive-Through Coffee Chains Are Rewriting U.S. Coffee Culture
U.S. Demands Brussels Scrutinize Digital Rules to Prevent Bias Against American Tech
Ringo Starr Champions Enduring Beatles Legacy While Debuting Las Vegas Art Show
Private Equity’s Fundraising Surge Triggers Concern of European Market Shake-Out
Colombian President Petro Vows to Mobilize Volunteers for Gaza and Joins List of Fighters
FBI Removes Agents Who Kneeled at 2020 Protest, Citing Breach of Professional Conduct
Trump Alleges ‘Triple Sabotage’ at United Nations After Escalator and Teleprompter Failures
Shock in France: 5 Years in Prison for Former President Nicolas Sarkozy
Tokyo’s Jimbōchō Named World’s Coolest Neighbourhood for 2025
European Officials Fear Trump May Shift Blame for Ukraine War onto EU
BNP Paribas Abandons Ban on 'Controversial Weapons' Financing Amid Europe’s Defence Push
Typhoon Ragasa Leaves Trail of Destruction Across East Asia Before Making Landfall in China
The Personality Rights Challenge in India’s AI Era
Big Banks Rebuild in Hong Kong as Deal Volume Surges
Italy Considers Freezing Retirement Age at 67 to Avert Scheduled Hike
Italian City to Impose Tax on Visiting Dogs Starting in 2026
Arnault Denounces Proposed Wealth Tax as Threat to French Economy
Study Finds No Safe Level of Alcohol for Dementia Risk
Denmark Investigates Drone Incursion, Does Not Rule Out Russian Involvement
Lilly CEO Warns UK Is ‘Worst Country in Europe’ for Drug Prices, Pulls Back Investment
Nigel Farage Emerges as Central Force in British Politics with Reform UK Surge
Disney Reinstates ‘Jimmy Kimmel Live!’ after Six-Day Suspension over Charlie Kirk Comments
U.S. Prosecutors Move to Break Up Google’s Advertising Monopoly
Nvidia Pledges Up to $100 Billion Investment in OpenAI to Power Massive AI Data Center Build-Out
U.S. Signals ‘Large and Forceful’ Support for Argentina Amid Market Turmoil
Nvidia and Abu Dhabi’s TII Launch First AI-&-Robotics Lab in the Middle East
Vietnam Faces Up to $25 Billion Export Loss as U.S. Tariffs Bite
Europe Signals Stronger Support for Taiwan at Major Taipei Defence Show
Indonesia Court Upholds Military Law Amid Concerns Over Expanded Civilian Role
Larry Ellison, Michael Dell and Rupert Murdoch Join Trump-Backed Bid to Take Over TikTok
Trump and Musk Reunite Publicly for First Time Since Fallout at Kirk Memorial
Vietnam Closes 86 Million Untouched Bank Accounts Over Biometric ID Rules
×