London Daily

Focus on the big picture.
Saturday, Nov 15, 2025

How a magician-mathematician revealed a casino loophole

How a magician-mathematician revealed a casino loophole

When a gang of gambling cheats sussed out how to beat the house, they inadvertently highlighted a loophole from a shuffled deck. It took a magician-turned-mathematician to reveal how.

The industry executives were anxious. Their company manufactured precision card-shuffling machines for casinos. Thousands of their mechanical shufflers were in operation in Las Vegas and around the world. The rental fees brought in millions of dollars each year, and the company was listed on the New Stock Exchange.

However, the executives had recently discovered that one of their machines had been hacked by a gang of hustlers. The gang used a hidden video camera to record the workings of the card shuffler through a glass window. The images, transmitted to an accomplice outside in the casino parking lot, were played back in slow motion to figure out the sequence of cards in the deck, which was then communicated back to the gamblers inside. The casino lost millions of dollars before the gang were finally caught.

The executives were determined not to be hacked again. They had developed a prototype of a sophisticated new shuffling machine, this time in enclosed in an opaque box. Their engineers assured them that the machine would sufficiently randomise a deck of cards with one pass through the device, reducing the time between hands while also beating card-counters and crooked dealers. But they needed to be sure that their machine properly shuffled the deck. They needed Persi Diaconis.

Diaconis, a magician-turned-mathematician at Stanford University, is regarded as the world's foremost expert on the mathematics of card shuffling. Throughout the surprisingly large scholarly literature on the topic, his name keeps popping up like the ace of spades in a magician's sleight-of-hand trick.

So, when the company executives contacted him and offered to let him see the inner workings of their machine – a literal "black box" – he couldn't believe his luck.

With his collaborator Susan Holmes, a statistician at Stanford, Diaconis travelled to the company’s Las Vegas showroom to examine a prototype of their new machine. The pair soon discovered a flaw. Although the mechanical shuffling action appeared random, the mathematicians noticed that the resulting deck still had rising and falling sequences, which meant that they could make predictions about the card order.

To prove this to the company executives, Diaconis and Holmes devised a simple technique for guessing which card would be turned over next. If the first card flipped was the five of hearts, say, they guessed that the next card was the six of hearts, on the assumption that the sequence was rising. If the next card was actually lower – a four of hearts, for instance – this meant they were in a falling sequence, and their next guess was the three of hearts.

Cheaters were able to predict the order of cards in a shuffled deck by closely watching the card shuffle machine


With this simple strategy, the mathematicians were able to correctly guess nine or 10 cards per deck – one-fifth of the total – enough to double or triple the advantage of a competent card-counter.

Card counting is a practice in which a player keeps track of which cards have been dealt in order to have a slight advantage predicting the probability that the next card is a winner or loser. The practice has been around for decades (and in some games like Bridge is a legitimate part of the gameplay), but is heavily cracked down on in casino games like Blackjack. The use of technology to assist a card counter is outlawed.

The executives were horrified. "We are not pleased with your conclusions," they wrote to Diaconis, "but we believe them and that's what we hired you for." The company quietly shelved the prototype and switched to a different machine.

Diaconis has spent a lifetime studying problems that live on the borderlands between order and randomness. Whether it is decoding scrambled messages, reassembling strands of DNA, or optimising web search engines, he has a knack for transforming these problems into a question about card shuffling.

His interest in cards began with a chance encounter in 1958. At age 13, at Tannen's Magic Emporium in New York City's Times Square, Diaconis met Alex Elmsley, a soft-spoken Scottish computer scientist and magician who had mastered the "perfect shuffle". Sometimes called the "faro shuffle" or simply "the technique", the perfect shuffle involves splitting a deck into two stacks of exactly 26 cards each and perfectly weaving them together like a zipper, alternately interleaving one card from each hand. Very few people can do it correctly in less than 10 seconds. Diaconis is one.

The perfect shuffle has been used by gamblers and magicians for centuries because it gives the illusion of randomly shuffling the cards. But it is far from random. In fact, if you perform the same sequence of perfect shuffles eight times in a row, the deck will magically restore its original order.

Diaconis likes to demonstrate the perfect shuffle by taking a new deck of cards and writing the word "RANDOM" in thick black marker on one side. As he performs his sleight of hand with the cards, the letters get mixed up, appearing now and then in ghostly form, like an imperfectly tuned image on an old TV set. Then, after he does the eighth and final shuffle, the word rematerialises on the side of the deck. The cards are in their exact original sequence, from the ace of spades to the ace of hearts.

Back in Tannen's Magic Emporium, Elmsley explained the subtle mathematics behind the trick. Imagine that you number a new deck of cards from one to 52, where one is the card at the top of the deck and 52 is the card at the bottom. As you perform the perfect shuffle, cards move to new positions in the deck. For example, the card originally at position two will move to position three, while the card at position three will move to position five, and the card at position 27 will come back up to position two, and so on.

Once you shuffle the deck seven times, the cards become truly mixed, at least as far as most statistical tests can prove


The perfect shuffle can be thought of as a whole series of cycles, like separate games of musical chairs. The number of shuffles required to return the cards to their correct order is the least common multiple of the lengths of all the cycles: in this case eight shuffles (eight is the smallest multiple of one, two, and eight).

The following year, aged 14, Diaconis ran away from home to learn magic under the guidance of a famous sleight-of-hand magician. They spent 10 years on the road, learning every possible style of shuffling and tracking down crooked dealers to learn their techniques.

But his conversation with Elmsley had sparked Diaconis' curiosity. What other connections lay between mathematics and magic?

Diaconis says that he will have "seven shuffles suffice" carved on his tombstone. He is referring to his most famous realisation: that it takes seven "riffle shuffles" to sufficiently randomise a deck of cards. The riffle shuffle is the familiar technique, used by casinos and serious card players, in which the deck is cut in two and then thumbed together with a satisfying zip, often ending with a bridge finish that gathers the cards together into a neat pile.

The riffle shuffle is the unruly twin of the perfect shuffle. Instead of perfectly interleaving the two halves of the decks, the halves are mixed together in disorderly clumps, planting a seed of randomness that progressively mixes the cards with each shuffle.

After one or two riffle shuffles, some cards will remain in their original sequence. Even after four or five shuffles – far more than most casinos typically use – the deck will retain some trace of order. But once you shuffle the deck seven times, the cards become truly mixed, at least as far as most statistical tests can prove. Beyond that point, further mixing will not do much. "It's just as close to random as can be," Diaconis says.

The perfect shuffle, in which each card is interwoven alternately, takes years to master


To study riffle shuffles rigorously, Diaconis used a powerful mathematical tool called a Markov chain.

"A Markov chain is any repeated action where the outcome depends only on the current state and not on how that state was reached", explains Sami Hayes Assaf, a mathematician at the University of Southern California. This means that Markov chains have no "memory" of what came before. This is a pretty good model for shuffling cards, says Assaf. The result of the seventh shuffle depends only on the order of the cards after the sixth shuffle, not on how the deck was shuffled the five times prior to that.

Markov chains are widely used in statistics and computer science to handle sequences of random events, whether they are card shuffles or vibrating atoms or fluctuations in stock prices. In each case, the future "state" – the order of the deck, the energy of an atom, the value of a stock – depends only on what's happening now, not what happened before.

Despite their simplicity, Markov chains can be used to make predictions about the likelihood of certain events after many iterations. Google's PageRank algorithm, which ranks websites in their search engine results, is based on a Markov chain that models the behaviour of billions of internet users randomly clicking on web links.

Working with Dave Bayer, a mathematician at Columbia University in New York, Diaconis showed that the Markov chain describing riffle shuffles has a sharp transition from ordered to random after seven shuffles. This behaviour, known to mathematicians as a cut-off phenomenon, is a common feature of problems involving mixing. Think of stirring cream into coffee: as you stir, the cream forms thin white streaks in the black coffee before they suddenly, and irreversibly, become mixed.

Knowing which side of the cut-off a deck of cards is on – whether it is properly shuffled or if it still preserves some memory of its original order – gives gamblers a distinct advantage against the house.

In the 1990s, a group of students at Harvard and MIT were able to beat the odds playing blackjack at casinos around the US by using card counting and other methods to detect if the deck was properly shuffled. Casinos responded by introducing more sophisticated card-shuffling machines, and shuffling the deck before it is fully played, as well as stepped-up surveillance of players. But it is still rare to see a deck of cards shuffled by machine the requisite seven times at a casino.

Casino executives may not have paid much heed to Diaconis and his research, but he continues to have an enormous influence on mathematicians, statisticians and computer scientists who study randomness. At a conference held at Stanford in January 2020 to honour Diaconis's 75th birthday, colleagues from around the world gave talks on the mathematics of genetic classification, how cereal settles in a shaking box, and, of course, card shuffling.

Diaconis doesn't care for gambling much himself – he says there are better and more interesting ways to make a living. But he doesn't begrudge players who try to get an edge by using their brains.

"Thinking isn't cheating," he says. "Thinking is thinking."

Newsletter

Related Articles

0:00
0:00
Close
UK Upholds Firm Rules on Stablecoins to Shield Financial System
Brussels Divided as UK-EU Reset Stalls Over Budget Access
Prince Harry’s Remembrance Day Essay Expresses Strong Regret at Leaving Britain
UK Unemployment Hits 5% as Wage Growth Slows, Paving Way for Bank of England Rate Cut
Starmer Warns of Resurgent Racism in UK Politics as He Vows Child-Poverty Reforms
UK Grocery Inflation Slows to 4.7% as Supermarkets Launch Pre-Christmas Promotions
UK Government Backs the BBC amid Editing Scandal and Trump Threat of Legal Action
UK Assessment Mis-Estimated Fallout From Palestine Action Ban, Records Reveal
UK Halts Intelligence Sharing with US Amid Lethal Boat-Strike Concerns
King Charles III Leads Britain in Remembrance Sunday Tribute to War Dead
UK Retail Sales Growth Slows as Households Hold Back Ahead of Black Friday and Budget
Shell Pulls Out of Two UK Floating Wind Projects Amid Renewables Retreat
Viagogo Hit With £15 Million Tax Bill After HMRC Transfer-Pricing Inquiry
Jaguar Land Rover Cyberattack Pinches UK GDP, Bank of England Says
UK and Germany Sound Alarm on Russian-Satellite Threat to Critical Infrastructure
Former Prince Andrew Faces U.S. Congressional Request for Testimony Amid Brexit of Royal Title
BBC Director-General Tim Davie and News CEO Deborah Turness Resign Amid Editing Controversy
Tom Cruise Arrives by Helicopter at UK Scientology Fundraiser Amid Local Protests
Prince Andrew and Sarah Ferguson Face Fresh UK Probes Amid Royal Fallout
Mothers Link Teen Suicides to AI Chatbots in Growing Legal Battle
UK Government to Mirror Denmark’s Tough Immigration Framework in Major Policy Shift
UK Government Turns to Denmark-Style Immigration Reforms to Overhaul Border Rules
UK Chancellor Warned Against Cutting Insulation Funding as Budget Looms
UK Tenant Complaints Hit Record Levels as Rental Sector Faces Mounting Pressure
Apple to Pay Google About One Billion Dollars Annually for Gemini AI to Power Next-Generation Siri
UK Signals Major Shift as Nuclear Arms Race Looms
BBC’s « Celebrity Traitors UK » Finale Breaks Records with 11.1 Million Viewers
UK Spy Case Collapse Highlights Implications for UK-Taiwan Strategic Alignment
On the Road to the Oscars? Meghan Markle to Star in a New Film
A Vote Worth a Trillion Dollars: Elon Musk’s Defining Day
AI Researchers Claim Human-Level General Intelligence Is Already Here
President Donald Trump Challenges Nigeria with Military Options Over Alleged Christian Killings
Nancy Pelosi Finally Announces She Will Not Seek Re-Election, Signalling End of Long Congressional Career
UK Pre-Budget Blues and Rate-Cut Concerns Pile Pressure on Pound
ITV Warns of Nine-Per-Cent Drop in Q4 Advertising Revenue Amid Budget Uncertainty
National Grid Posts Slightly Stronger-Than-Expected Half-Year Profit as Regulatory Investments Drive Growth
UK Business Lobby Urges Reeves to Break Tax Pledges and Build Fiscal Headroom
UK to Launch Consultation on Stablecoin Regulation on November 10
UK Savers Rush to Withdraw Pension Cash Ahead of Budget Amid Tax-Change Fears
Massive Spoilers Emerge from MAFS UK 2025: Couple Swaps, Dating App Leaks and Reunion Bombshells
Kurdish-led Crime Network Operates UK Mini-Marts to Exploit Migrants and Sell Illicit Goods
UK Income Tax Hike Could Trigger £1 Billion Cut to Scotland’s Budget, Warns Finance Secretary
Tommy Robinson Acquitted of Terror-related Charge After Phone PIN Dispute
Boris Johnson Condemns Western Support for Hamas at Jewish Community Conference
HII Welcomes UK’s Westley Group to Strengthen AUKUS Submarine Supply Chain
Tragedy in Serbia: Coach Mladen Žižović Collapses During Match and Dies at 44
Diplo Says He Dated Katy Perry — and Justin Trudeau
Dick Cheney, Former U.S. Vice President, Dies at 84
Trump Calls Title Removal of Andrew ‘Tragic Situation’ Amid Royal Fallout
UK Bonds Rally as Chancellor Reeves Briefs Markets Ahead of November Budget
×